Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Differential Equation PYQ


NIMCET PYQ
The curve satisfying the differential equation ydx-(x+3y2)dy=0 and passing through the point (1,1) also passes through the point __________





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2019 PYQ

Solution

Given: \(y\,dx-(x+3y^{2})\,dy=0 \;\Rightarrow\; y\,\dfrac{dx}{dy}=x+3y^{2}\).

So \( \dfrac{dx}{dy}-\dfrac{1}{y}x=3y\) (linear). Integrating factor \(=\exp\!\int\!-\dfrac{1}{y}dy=\dfrac{1}{y}\).

\(\displaystyle \frac{d}{dy}\!\left(\frac{x}{y}\right)=3 \;\Rightarrow\; \frac{x}{y}=3y+C \;\Rightarrow\; x=3y^{2}+Cy.\)

Through \((1,1)\): \(1=3(1)+C(1)\Rightarrow C=-2\). Hence curve: \(x=3y^{2}-2y\).


NIMCET PYQ
The solution of (ex + 1) y dy = (y + 1) edx is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution

Question: Solve $(e^x+1)\,y\,dy=(y+1)\,e^x\,dx$.

Solution:

Separate: $\dfrac{y}{y+1}\,dy=\dfrac{e^x}{e^x+1}\,dx$

Integrate: $y-\ln(y+1)=\ln(e^x+1)+C$

Answer (implicit): $\boxed{\,y-\ln(1+y)=\ln(1+e^x)+C\,}$

Equivalently: $\dfrac{e^{y}}{y+1}=K(1+e^x)$.

Answer : $e^y=k(y+1)(1+e^x)$


NIMCET PYQ
The solution of the differential equation $\dfrac{dy}{dx}=e^{x+y}+x^2e^y$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution

$\dfrac{dy}{dx}=e^y(e^x+x^2)\ \Rightarrow\ e^{-y}dy=(e^x+x^2)dx$

$\int e^{-y}dy=\int (e^x+x^2)dx$ $\Rightarrow\ -e^{-y}=e^x+\dfrac{x^3}{3}+C$

Hence, $e^{-y}+e^x+\dfrac{x^3}{3}=C$ (or $y=-\ln\!\big(C-e^x-\dfrac{x^3}{3}\big)$).

Answer: $\boxed{e^{-y}+e^x+\dfrac{x^3}{3}=C}$ ✅



NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...